Article 8316

Title of the article

SIMULATION OF ATOMIC DISPLACEMENT CASCADES IN THE DEFORMED HCP ZIRCONIUM MODEL BY THE MOLECULAR DYNAMICS METHOD. EVALUATION OF THE EFFECT OF DEFORMATION ON THE DEFECT STRUCTURE

Authors

Kapustin Pavel Evgen'evich, Postgraduate student, Research Technological Institute named after S. P. Kapitsa, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), kapustinpe91@gmail.com
Svetukhin Vyacheslav Viktorovich, Doctor of physical and mathematical sciences, professor, leading researcher, Research Technological Institute named after S. P. Kapitsa, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), slava@sv.uven.ru
Tikhonchev Mikhail Yur'evich, Candidate of physical and mathematical sciences, head of laboratory of computer modelling of inorganic materials, Research Technological Institute named after S. P. Kapitsa, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), tikhonchev@sv.ulsu.ru

Index UDK

544.022.342, 544.022.344.2

DOI

10.21685/2072-3040-2016-3-8

Abstract

Background. The paper considers the influence of hydrostatic and uniaxial deformation of the HCP-Zirconium model crystallite on its defect structure formed as a result of the atomic displacement cascade passage with the energy of primary knock-on atom (PKA) 10 keV. The following axes were chosen for uniaxial deformation: 23 46 23 27 , 1 2 1 3 , 4 51 0 and 2 1 3 0 . The compression and expansion ratio of the model crystallite amounted to 0.1, 0.5 and 1%.
Materials and methods. The study considers the HCP-Zirconium crystallite with hydrostatic and uniaxial deformation. A computer simulation was performed with the help of the molecular dynamics method using the many-body potential of interatomic interaction.
Results. Numerical values of the point defects formation energy at the temperature of 0 K were obtained. The dependence of a number of surviving Frenkel pairs on the model crystallite deformation degree was not determined. The defects clustering analysis revealed the dominating single defects formation. Clusters of large size (>20 defects per cluster) were represented mainly by vacancies.
Conclusions. The linear dependence of the formation energy on the model crystallite deformation degree was revealed. The defects clustering analysis revealed the dominating single defects formation. Clusters of large size (>20 defects per cluster) were represented mainly by vacancies. The largest defects clusters sizes were obtained in the deformed state, thus, the model crystallite deformation extended the formed clusters growth. The proportion of clustered vacancies was determined to exceed the proportion of self-interstitial atoms (SIA), and the average vacancy cluster size exceeded the average size of the SIA cluster.

Key words

zirconium, deformation, formation energy, atomic displacements cascades, defects clustering.

Download PDF
References

1. Holt R. A. Journal of Nuclear Materials. 2008, vol. 372, no. 2-3, pp. 182–214.
2. Field G. J., Dunn J. T., Cheadle B. A. Canadian Metallurgical Quarterly. 1985, vol. 24, no. 3, pp. 181–188.
3. Bates J. F., Gilbert E. R. Journal of Nuclear Materials. 1976, vol. 59, no. 2, pp. 95–102.
4. Bates J. F., Gilbert E. R. Journal of Nuclear Materials. 1978, vol. 71, no. 2, pp. 286–291.
5. Neustroev V. S., Belozerov S. V., Makarov E. I., Obukhov A. V. Fizika metallov i metallovedenie [Pgysics of metals and physical metallurgy]. 2014, vol. 115, no. 10, pp. 1070–1074.
6. Margolin B. Z., Murashova A. I., Neustroev V. S. Voprosy materialovedeniya [Problems of materials science]. 2011, vol. 68, no. 4, pp. 124–139.
7. Zhang J. M., Huang Y. H., Wu X. J., Xu K. W. Applied Surface Science. 2006, vol. 252, no. 14, pp. 4936–4942.
8. Pérez F. J. P., Smith R. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1999, vol. 153, no. 1-4, pp. 136–141.
9. Pérez F. J. P., Smith R. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2001, vol. 180, no. 1-4, pp. 322–328.
10. Martino S. F. D., Faulkner R. G., Smith R. Journal of Nuclear Materials. 2011, vol. 417, no. 1-3, pp. 1058–1062.
11. Psakhie S. G., Zolnikov K. P., Kryzhevich D. S., Zheleznyakov A. V., Chernov V. M. Crystallography Reports. 2009, vol. 54, pp. 1002–1010.
12. Wachowicz E., Ossowski T., Kiejna A. Physical Review B. 2010, vol. 81, p. 094104.
13. Terentyev D., He X., Zhurkin E., Bakaev A. Journal of Nuclear Materials. 2011, vol. 408, no. 2, pp. 161–170.
14. Field K. G., Barnard L. M., Parish C. M., Busby J. T., Morgan D., Allen T. R. Journal of Nuclear Materials. 2013, vol. 435, no. 1-3, pp. 172–180.
15. Tikhonchev M., Muralev A., Svetukhin V. Fusion Science and Technology. 2014, vol. 66, no. 1, pp. 91–99.
16. Hengstler-Eger R. M., Baldo P. M., Beck L., Dorner J., Ertl K., Hoffman P. B., Hugenschmidt C., Kirk M. A., Petry W., Pilkart P., Rempel A. Journal of Nuclear Materials. 2012, vol. 423, no. 1-3, pp. 170–182.
17. Idrees Y., Gao Z., Kirk M. A., Daymond M. R. Journal of Nuclear Materials. 2013, vol. 433,no.1-3,pp.95–107.
18. Wooding S. J., Howe L. M., Gao F., Calder A. F., Bacon D. J. Journal of Nuclear Materials. 1998, vol. 254, no. 2-3, pp. 191–204.
19. Gao F., Bacon D. J., Howe L. M., So C. B. Journal of Nuclear Materials. 2001, vol. 294, no. 3, pp. 288–298.
20. Voskoboinikov R. E., Osetsky Y. N., Bacon D. J. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2006, vol. 243, no. 1-2, pp. 530–533.
21. Mendelev M. I., Ackland G. J. Philosophical Magazine Letters. 2007, vol. 87, no. 5, pp. 349–359.
22. Kapustin P. E. Izvestiya Samarskogo nauchnogo tsentra RAN [Proceedings of Samara Scientific Center of RAS]. 2013, no. 4, pp. 1131–1136.
23. Kapustin P. E., Tikhonchev M. Yu., Svetukhin V. V. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2015, no. 2 (34), pp. 148–163.
24. Miyashiro S., Fujita S., Okita T. Journal of Nuclear Materials. 2011, vol. 415, no. 1, pp. 1–4.
25. Korchuganov A. V., Zol'nikov K. P., Kryzhevich D. S., Chernov V. M., Psakh'e S. G. Voprosy atomnoy nauki i tekhniki. Ser. Termoyadernyy sintez [Problems of nuclear sciences and technology. Thermonuclear synthesis]. 2015, vol. 38, no. 1, pp. 42–48.
26. Gao F., Bacon D., Flewitt P., Lewis T. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2001, vol. 180, no. 1-4, pp. 187–193.
27. Beelera B., Astab M., Hosemannc P., Grønbech-Jensen N. Journal of Nuclear Materials. 2015, vol. 459, pp. 159–165.
28. Miyashiro S., Fujita S., Okita T., Okuda H. Fusion Engineering and Design. 2012, vol. 87, no. 7–8, pp. 1352–1355.
29. Di S., Yao Z., Daymond M., Gao F. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2013, vol. 303, pp. 95–99.

 

Дата создания: 19.12.2016 11:24
Дата обновления: 19.12.2016 16:46